大家好,今天小编关注到一个比较有意思的话题,就是关于python机器学习教学的问题,于是小编就整理了4个相关介绍Python机器学习教学的解答,让我们一起看看吧。
- python高级机器学习是什么?
- 想学习python用来做机器学习方面的内容(如建立LDA模型),该如何入门并学习?
- Python速度那么慢,为什么还经常用于机器学习?
- Python机器学习,如何特征学习人脸?
python高级机器学习是什么?
Python 高级机器学习是指利用 Python 编程语言进行特征工程、模型训练、模型评估和优化的一类机器学习任务。Python 因其丰富的库和易于使用的语法,成为了机器学习领域中的主要工具。高级机器学习涵盖了包括深度学习、自然语言处理、计算机视觉和强化学习等多个子领域。通过使用 Python,研究人员和开发者可以更高效地构建、训练和部署机器学习模型,从而实现对复杂数据集的深度挖掘和高效处理。
想学习python用来做机器学习方面的内容(如建立LDA模型),该如何入门并学习?
Python基础
首先,装ANACONDA,是PYTHON的集成环境。
CSDN也有PYTHON的知识库,不过不够系统,可以有一定基础再看看。链接
程序很短,知识量很大。把这个搞明白了,你也就入门了。
Python速度那么慢,为什么还经常用于机器学习?
python 在机器学习时,运行计算时,调用numpy 库,这个库速度非常快,和c语言的一个级别。现在运算量大的 机器学习 算法,都用 gpu,tpu 等硬件提速,如果靠cpu,无论***用什么编程语言,都不可能 达到要求,类似 比特币挖矿,都用矿机,用cpu 挖就赚不到钱,比电费多不了多少。机器学习 ***用硬件提速 也是这个道理。所以和上边***用的编程语言 关系不大。 python 编程速度快,算法编程实现是,可以大大节约 开发人员的时间,减少软件错误。
python,是最适合机器学习的,所以被广泛***用。
python,只所以在桌面软件,服务器等大型软件上,***用的少,主要原因是 和 c以及java 相比,python 不利于代码的保密。而机器学习,不需要将算法代码,发布给用户,所以没有这方面问题。
大部分的机器学习库都是用 C++ 写的,都提供了对 Java 和 Python 的支持,使用这俩语言相当于在调包而已,一些计算密集型、IO密集型的操场都是底层框架在跑,所以对于 Python 写的机器学习项目来说,不是很慢。
主要原因还是 Python 语法简洁,上手容易。
Python机器学习,如何特征学习人脸?
对于人脸识别经过这么多年的发展,目前已经相对成熟,当然不排除双胞胎之类的识别错误,目前智能手机上其实都有人脸检测的存在,比如拍照时的定焦就可以直接根据检测出来的人脸做参照物,也有笑脸拍照这样的功能,现在苹果,华为,[_a***_]等公司在手机解锁、支付等方面都有具体应用。
对于提取人脸特征这块主要经历两个大的算法时代,一个就是12年以前经典的Adaboost算法基本达到了工业级的人脸检测,所使用的特征就是harr特征,通过大量不同组合的简单的黑白块的对比构建人脸五官上的特征。第二个就是深度学习算法,各种检测加识别都是通过构建CNN网络从大量人脸数据中提取各种特征。
到此,就是小编对于python机器学习教学的问题就介绍到这了,希望介绍关于python机器学习教学的4点解答对大家有用。